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ABSTRACT: A series of meteorological measurements with a small uncrewed aircraft system (sUAS) was collected at
Oliver Springs Airport in Tennessee. The sUAS provides a unique observing system capable of obtaining vertical profiles
of meteorological data within the lowest few hundred meters of the boundary layer. The measurements benefit simulated
plume predictions by providing more accurate meteorological data to a dispersion model. The sUAS profiles can be used
directly to drive HYSPLIT dispersion simulations. When using sUAS data covering a small domain near a release and me-
teorological model fields covering a larger domain, simulated pollutants may be artificially increased or decreased near the
domain boundary because of inconsistencies in the wind fields between the two meteorological inputs. Numerical experi-
ments using the Weather Research and Forecasting (WRF) Model with observational nudging reveal that incorporating
sUAS data improves simulated wind fields and can significantly affect mixing characteristics of the boundary layer, espe-
cially during the morning transition period of the planetary boundary layer. We conducted HYSPLIT dispersion simula-
tions for hypothetical releases for three case study periods using WRF meteorological fields with and without assimilating
sUAS measurements. The comparison of dispersion results on 15 and 16 December 2021 shows that using sUAS observa-
tional nudging is more significant under weak synoptic conditions than under strong influences from regional weather.
Very different dispersion results were introduced by the meteorological fields used. The observational nudging produced
not just an sUAS-nudged wind flow but also adjusted meteorological fields that further impacted the mixing calculation in
HYSPLIT.

KEYWORDS: Dispersion; In situ atmospheric observations; Data assimilation; Model evaluation/performance;
Boundary layer

1. Introduction

Small uncrewed aircraft systems (sUAS) have the unique
ability to close a significant observation gap in the sampling of
Earth’s atmosphere because of their ability to obtain informa-
tion on temperature, moisture, and wind in the lowest few
hundred meters of the atmosphere (e.g., Holland et al. 2001;
Houston et al. 2012; Elston et al. 2015). Over the past several
years, both rotary-wing and fixed-wing sUAS have been used
in field campaigns to study land–atmosphere interactions and
planetary boundary layer (PBL) processes. Recent campaigns
using sUAS have included, for example, the Verification of
the Origins of Rotation in Tornadoes Experiment–Southeast
(VORTEX-SE; e.g., Lee et al. 2019; Wagner et al. 2019) in

northern Alabama, the Land–Atmosphere Feedback Ex-
periment (LAFE; e.g., Wulfmeyer et al. 2018, 2023) in
northern Oklahoma, studies of the North American eclipse
on 21 August 2017 (e.g., Bailey et al. 2019; Buban et al.
2019), the Lower Atmospheric Process Studies at Elevation–A
Remotely Piloted Aircraft Team Experiment (LAPSE-RATE;
e.g., Barbieri et al. 2019; de Boer et al. 2020a,b) in Colorado, and
the Chequamegon Heterogeneous Ecosystem Energy-Balance
Study Enabled by a High-Density Extensive Array of Detectors
2019 (CHEESEHEAD19; e.g., Butterworth et al. 2021) in
Wisconsin. Since 2015, the NOAA Air Resources Laboratory
(ARL) has been using a fleet of sUAS to sample the PBL.
ARL’s sUAS measurements include vertical profiles of thermo-
dynamic and kinematic parameters and can also be used to infer
fluxes near the surface (Lee et al. 2017; Buban et al. 2019; Lee
et al. 2019). From August through December 2020, ARL per-
formed quasi-routine flights with its Meteomatics Meteodrone
SSE sUAS at the Oliver Springs Airport (OSI) in Oliver
Springs, Tennessee. The Meteomatics Meteodrone is a rotary-
wing hexacopter sUAS. Its payload includes a bead thermistor
and capacitive sensor for sampling temperature and relative hu-
midity, respectively, and a piezo resistive pressure sensor. Al-
though there is no sensor package on the aircraft explicitly used
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for sampling wind, wind speed and wind direction are derived
from the Meteomatics Meteodrone using global positioning
system (GPS) and onboard inertial sensors (Dumas et al.
2021). Because the sUAS can provide a unique observing sys-
tem capable for the vertical profiles of meteorological condi-
tions within the PBL, using the data in dispersion modeling
may be beneficial for improving plume prediction by providing
more accurate meteorological variables.

Recent studies demonstrated the potential value of using
sUAS measurements in numerical weather prediction for reduc-
ing model biases and providing better forecasts during various
high-impact weather events (Flagg et al. 2018; Leuenberger et al.
2020; Jensen et al. 2021). The Advanced Research dynamic core
of the Weather Research and Forecasting (WRF) Model
(Powers et al. 2017) has been frequently used to generate meteo-
rological input fields for dispersion applications (Hegarty et al.
2013; Ngan and Stein 2017; Chai et al. 2018; Loughner et al.
2021). Jensen et al. (2021, 2022) assessed the benefit of assimilat-
ing sUAS observations in WRF simulations for a case study of
drainage and up-valley flow in complex terrain. The sUAS-
improved meteorological input fields may further positively
impact air quality and dispersion modeling. The NOAA/ARL
HYSPLIT model (Stein et al. 2015; Draxler et al. 2022) is one of
the most extensively used atmospheric transport and dispersion
models in the atmospheric sciences community, including wide-
spread operational emergency-response applications to assess
the movement of harmful materials in the atmosphere. One
of the sources of uncertainty in dispersion modeling is the
accuracy of the meteorological input used to drive the model.
Because most emissions start at or near the surface, sUAS
measurements from the lowest part of the PBL can be signifi-
cant in helping to improve the overall quality of the dispersion
prediction.

The objective of this study is to explore different ways of
using the sUAS-collected meteorological data in numerical
modeling and to assess their impact on meteorological and
dispersion simulations. The meteorological profiles taken by
the Meteomatics Meteodrone SSE sUAS may be used di-
rectly to drive HYSPLIT simulations after converting the
data to the HYSPLIT meteorological input file format. How-
ever, profiles in one location can only provide a limited area
of gridded data for running trajectory and dispersion simula-
tions. For this reason, it is better to profile simultaneously us-
ing multiple sUAS (e.g., Nolan et al. 2018). The second
approach is to use the converted sUAS data with other Nu-
merical Weather Prediction (NWP) products as inputs into
HYSPLIT simulations. One of the available products that can
provide forecast and near real-time meteorological data is
NOAA’s High-Resolution Rapid Refresh (HRRR) model
(Benjamin et al. 2016). The inconsistency of model winds be-
tween the sUAS observations and NWP models may cause an
issue as HYSPLIT simulates the plume across the inner data
domain generated from the sUAS observations to the outer
domain based on an NWP model. Another alternative is as-
similating the sUAS data within an NWP model (such as
WRF) simulation to improve the accuracy of the model’s
predicted kinematic and thermodynamic fields. Using the sUAS-
assimilated WRF fields to drive HYSPLIT simulations, we

assessed how the sUAS data impacts the model’s performance
in simulating wind fields and its impacts on the transport and
mixing of pollutants.

Four-dimensional data assimilation (so-called nudging) is a
well-known and efficient method in WRF to reduce model
bias by incorporating observations during the simulation
(Deng et al. 2009; Reen 2016). The model considers gridded
analysis fields (analysis nudging) or individual observations
(observational nudging) and corrects biases for temperature,
moisture, and u and y components of wind at each integration
time step. The nudging tool in WRF has been widely used
and has been demonstrated to be beneficial in generating im-
proved meteorological input data for air quality applications
and dispersion modeling (Hegarty et al. 2013; Ngan et al.
2015; Li et al. 2016; Lucas et al. 2017; Tran et al. 2018; Tomasi
et al. 2019; Jia et al. 2021; Abida et al. 2022). Most previous
studies used conventional hourly observations, such as surface
measurements at airports and radiosondes. In this study, tem-
perature and wind data measured by the sUAS were ingested
into WRF simulations using the observational nudging tech-
nique to adjust the model prediction toward sUAS measure-
ments. Profiles every 30 min of the lowest several hundred
meters above ground level (AGL) were used in this work.
Then, HYSPLIT simulations were conducted using the nudged
WRF fields. The results are compared with runs driven by the
meteorological fields from the HRRR model and a nonnudged
WRF simulation. We applied this method and comparison to
three study periods to understand the impact of using sUAS
wind and temperature profiles in WRF simulations through
observational nudging and its associated impacts on HYSPLIT
simulations. Section 2 presents a brief overview of the observa-
tional datasets, including the sUAS and tower data used in this
study. Model configurations for WRF and HYSPLIT are
described in section 3. Section 4 presents the results and
discussions for the three case studies, and section 5 provides a
summary and a discussion of future work.

2. Observational data

a. sUAS observations

1) CALIBRATIONS OF ONBOARD SUAS SENSORS

All sUAS flights were conducted using a Meteomatics
Meteodrone SSE (e.g., Koch et al. 2018), which weighs 0.7 kg
and has a 0.4-m wingspan. The onboard temperature and
humidity sensors have reported accuracies of60.18C and,2%,
respectively, and response times of ,1 and ,4 s, respectively,
whereas pressure is accurate to within 60.1 hPa. Prior to be-
ing deployed on the sUAS and following the procedure de-
scribed by, for example, Lee et al. (2019), the thermodynamic
sensors were calibrated using ATDD’s National Institutes
for Standards and Technology traceable calibration chamber
using three temperature set points (108, 208, and 308C) and
five relative humidity set points (20%, 40%, 60%, 80%, and
94%). These tests indicated that the thermodynamic sensors
have a cold and dry bias. The cold bias was as large as 0.38C,
whereas the dry bias ranged from 2% for low relative humid-
ity to ;9% for high relative humidity. Although we ourselves
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did not calibrate wind measurements from the Meteomatics
Meteodrone, previous work by Koch et al. (2018) reported
small biases in the wind measurements, that is, a 10.2 m s21

wind speed bias and clockwise 78 wind direction bias.

2) SUAS FLIGHTS

Between 20 August and 10 December 2020, NOAA/ARL
conducted 241 UAS flights spanning 31 days using its Meteo-
drone SSE sUAS. The profiling location was at OSI in Oliver
Springs (36.03718N, 84.30788W; 240 m above mean sea level),
which is about 5 km northwest of Oak Ridge, Tennessee, and
35 km northwest of Knoxville, Tennessee. Although OSI is
relatively flat and consists of a grassy runway available for use
by full-scale aircraft, the area surrounding the site consists of
complex topography. 100-m forested ridgetops immediately
surround the site; .1000-m mountains of the Cumberland
Plateau are located north and west of the site, whereas the
Smoky Mountains with maximum ridgetop heights of up to
2000 m are located south and east of OSI (Fig. 2). The winds
induced by these terrain features (e.g., local drainage winds)
cannot be resolved well by NWP models; the use of sUAS ob-
servations helps in this regard and is the major focus of this
study.

At OSI, ARL operated under the following Certificates of
Authorization (COA) from the Federal Aviation Administra-
tion (FAA): 2019-ESA-3583-COA and 2021-ESA-8968-COA.
These COAs enabled flights up to 1067 m AGL. Two of the au-
thors on this work, Dr. Schuyler and Mr. Dumas, are certified as
remote pilots for sUAS by the FAA under Part 107, received
manufacturer training on the sUAS platform, and served as pi-
lots in command (PIC) for this work.

Flights at OSI were conducted beginning around sunrise
and continuing at 30-min intervals until 3.5–4 h after sunrise.
Per ARL’s COA with the FAA, the sUAS was permitted to

collect vertical profiles up to a maximum altitude of 1000 m
AGL; however, the sUAS PIC and visual observer had to
maintain visual line of sight of the sUAS with the unaided eye
throughout the entire profile. Thus, the aircraft was flown by
the PIC to the maximum altitude that both the PIC and the vi-
sual observer could safely see the aircraft and then brought
down. The sky conditions and local visibility determined the
maximum altitude attainable on each flight, and although the
strobes and lights provided sufficient visibility to be seen at
1000 m AGL on some days, not every flight was able to be
flown to 1000 m AGL because of variable lighting and visi-
bility conditions. The sUAS ascended/descended at a vertical
velocity of 3 m s21; thus, the typical flight duration was
10–12 min. Temperature, pressure, humidity, and wind meas-
urements from these flights were provided in near–real time
to support short-term weather forecasting operations at the
National Weather Service (NWS) Weather Forecast Office
(WFO) in Morristown, Tennessee, and to study the early-
morning transition period of the PBL (Dumas et al. 2021).
Figure 1 shows the sUAS wind speed and direction profiles
taken on 20 August 2020. The observational data are available
during 1104–1437 UTC in 30-min intervals, from the surface up
to nearly 800 m AGL. A significant change of wind direction,
from southwesterly to northwesterly and then easterly, was ob-
served within the lowest 100 m AGL during 1100–1200 UTC.
The wind speed was larger (5–10 m s21) during the first flight at
1104 UTC and then lessened (ranging from 2 to 5 m s21) for the
other seven flights.

b. Tower observations

For the evaluation of the WRF results, in addition to the
sUAS profiles, we used meteorological observations taken at
OSI and Knox County Radio Control Society, Inc. (KCRC),
located about 12 km southeast of OSI (Fig. 2). At OSI, wind

FIG. 1. Wind (left) speed and (right) direction profiles measured by a Meteomatics Meteodrone SSE small UAS on
20 Aug 2020 from OSI (36.03718N, 84.30788W).
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speed and direction were sampled at 5.8 m AGL using an
R.M. Young Company 05103 anemometer, and air tempera-
ture was sampled using a Thermometrics Corp. PRT installed
at 5.2 m AGL (Dumas et al. 2021). The measurements at
KCRC included an R.M. Young 05103 anemometer for wind
speed and direction at 4.4 m AGL, and a Thermometrics PRT
at 2.8 m AGL for temperature. The tower data were reported
every 10 s and were aggregated to 10-min averages for com-
parison with the WRFModel results.

3. Modeling method

a. Using sUAS data in WRF and HYSPLIT

HYSPLIT requires gridded meteorological data at multiple
heights and time periods over the duration of the simulation.
To use the sUAS data to directly drive HYSPLIT, we devel-
oped a utility to create a combined profile of meteorological
fields from the sUAS measurements from the surface to the
top of the profile. This was coupled with archived HYSPLIT
meteorological input files above the sUAS flight to create a
new set of meteorological input files for running HYSPLIT.
For this study, profiles from HRRR meteorological files were
appended to the top of sUAS profiles to create the sUAS-
based HYSPLIT meteorological input files. This utility was
configured so the profiles will be used within a 20 km3 20 km
area surrounding the sUAS measurement site, although it is
understood that the sUAS profile at one location would not
necessarily be representative of conditions throughout even
this limited domain. Considering a 3 m s21 wind speed

condition, a plume travels about 10 km from the source loca-
tion within an hour. Thus, the gridded data based on one
sUAS profile used in this way generally only provide the me-
teorological conditions for a relatively small area to drive
HYSPLIT. For simulation of a plume traveling beyond the as-
sumed domain of the sUAS observations, we used the HRRR
meteorological fields to continue the dispersion simulation.
An issue associated with this approach is that a discontinuity
may happen when the model plume crosses over the bound-
ary between the converted-sUAS inner domain and HRRR
outer domain. Thus, we incorporated the sUAS data in WRF
simulations through observational nudging to generate im-
proved, continuous meteorological fields for the use of disper-
sion modeling. In this study, we used a meteorological model
with a horizontal spatial resolution of 3 km to drive the
HYSPLIT model, and a HYSPLIT concentration grid output
resolution of 1 km over which the concentrations were calcu-
lated by summing up the computational “particles” in each
grid cell. The model output frequency was at 30-min intervals
for WRF and 10-min intervals for HYSPLIT. Such resolution
is reasonable for mesoscale atmospheric phenomena and
short-range transport and dispersion scenarios, as long as the
terrain is not overly complex.

We selected two retrospective cases (Table 1), a single day
in August (case 1) and three consecutive days in November
(case 2), to test the use of sUAS data in WRF modeling and
optimize the nudging configuration. A third case testing the ca-
pability in an operational setting was also carried out (Table 1).
HYSPLIT simulations were driven by the WRF Model output
with and without using the sUAS data. By comparing the

FIG. 2. WRF simulation domains, terrain height from WRF, sUAS profiling location, and
two meteorological tower sites: OSI (36.03718N, 84.30788W) and KCRC (35.94808N, 84.23328W).
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results, we assessed the impact of using nudged-WRF fields on
dispersion simulations.

Assimilating meteorological data collected via sUAS into
WRF has the potential to benefit retrospective cases and en-
hance the HYSPLIT emergency response operations, includ-
ing the use of HYSPLIT by NOAA Weather Forecast Office
and within the Real-time Environmental Applications and
Display System (READY; Rolph et al. 2017). The automated
sUAS data ingestion feature was added to READY to incor-
porate sUAS data files and assimilate them with the WRF
Model. This prototype system demonstrates how the meteo-
rological fields converted directly from sUAS or WRF simula-
tions assimilated with sUAS measurements can be used to
drive HYSPLIT for transport and dispersion simulations to
support emergency response to hypothetical and real hazard-
ous air pollution events. An end-to-end system was developed
to automatically ingest and assimilate sUAS profile data into
the READY system for emergency-response HYSPLIT simu-
lations, and this system was tested during the sUAS flights
conducted on 15 and 16 December 2021 (case 3).

b. WRF Model configuration

The Advanced Research version of the WRF Model, ver-
sion 4.2.2, was used to generate the meteorological input fields
to drive HYSPLIT. As shown in Fig. 2, we configured two
sets of independent domains with a horizontal grid spacing of
3 km. The domain labeled as WRF-d3a was for retrospective
runs (i.e., case 1 and 2), whereas the smaller domain labeled
as WRF-d3b was for operational use (i.e., case 3). We used
33 vertical layers with higher vertical resolution near the sur-
face and coarser resolution near the top of the model domain
at 100 hPa. There were 20 layers below 850 hPa (;1.5 km),
with the first midlayer height of the model at around 8 m. The
retrospective simulations were initialized using the NCEP
Final (FNL) Operational Model Global Tropospheric Analyses

(NCEP/NWS/NOAA/U.S. Department of Commerce 2000)
in 18 spatial resolution and available every 6 h. For the
operational run, the model was initialized using the North
American Mesoscale Forecast System (NAM) in 12-km grid
spacing, downloaded from the NOAA Operational Model
Archive and Distribution System (NOMADS; Rutledge et al.
2006). The physics options used for the WRF simulations in-
clude the Rapid Radiative Transfer Model for GCMs for radi-
ation parameterization (RRTMG; Iacono et al. 2008), WSM6
for microphysics (Lim and Hong 2010), the Grell 3D ensem-
ble for the subgrid cloud scheme (Grell and Devenyi 2002),
the Noah land surface model (Chen and Dudhia 2001), the
Monin–Obukhov surface scheme, and the Shin–Hong PBL
parameterization scheme (Shin and Hong 2015).

It is a common practice to use the nudging feature in WRF
to provide more accurate meteorological input fields to drive
air quality and dispersion models (Hegarty et al. 2013; Ngan
et al. 2015; Li et al. 2016; Lucas et al. 2017; Tran et al. 2018;
Tomasi et al. 2019; Jia et al. 2021; Abida et al. 2022). A first
set of WRF simulations was carried out as described above
without observational nudging, and a second set of simula-
tions was performed using observational nudging with sUAS
profiles to minimize the bias of wind and temperature predic-
tion. The sUAS data was provided as ASCII format files gen-
erated by Meteomatics software for the measurements taken
during the ascending portions of the sUAS flights. We con-
verted the observational files to the format required by
WRF’s observational nudging. The variables for the observa-
tional nudging were temperature, relative humidity, and the u
and y wind components. Profile data collected via sUAS were
inserted into WRF from the surface to the top of the profile
at vertical intervals of 5 hPa. Sensitivity tests were performed
and evaluated with sUAS profiles to find an observational
nudging configuration to maximize the influence of the sUAS
data (Table 2 and section 4a). The WRF nudging parameters

TABLE 1. List of cases and available sUAS profiles in this study.

Date No. of profiles Profile time (UTC)

Case 1 (retrospective run) 20 Aug 2020 8 1104, 1137, 1205, 1234, 1304, 1335, 1404, 1437
Case 2 (retrospective run) 16 Nov 2020 8 1249, 1320, 1349, 1449, 1450, 1520, 1550, 1619

17 Nov 2020 8 1249, 1319, 1349, 1420, 1449, 1519, 1550, 1619
18 Nov 2020 8 1249, 1319, 1349, 1420, 1449, 1520, 1549, 1619

Case 3 (operational run) 15 Dec 2021 8 1303, 1335, 1405, 1435, 1505, 1535, 1607, 1635
16 Dec 2021 8 1306, 1331, 1405, 1435, 1504, 1534, 1604, 1634

TABLE 2. MAE computed using sUAS-collected data on 20 Aug 2020 for temperature (8C), wind speed (m s21), and wind
direction (8). Run 1: WRF simulation without observational nudging. Runs 2–6: WRF sensitivity tests with sUAS profiles nudging.
Observational nudging parameters including twindo}the half-period time window for using observations (h), coef_wind}the
nudging coefficient of wind (s21), and coef_t}the nudging coefficient of temperature (s21).

Case name Case description T WS WD

Run 1 Control run (“nonnudged WRF” hereinafter) 1.862 2.483 37.161
Run 2 sUAS obs nudging: twindo 5 1 0.643 1.326 65.923
Run 3 Shorten obs time window: twindo 5 0.4 0.633 1.415 30.599
Run 4 Increase wind coef: coef_wind 5 3.2 3 1023 0.615 0.833 24.795
Run 5 Increase temperature coef: coef_t 5 1.2 3 1023 0.536 0.864 27.952
Run 6 Insert sUAS 5-hPa (10 hPa for other runs) vertical interval (“Nudged WRF” hereinafter) 0.463 0.758 14.370
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were set as following: 1) 0.4 h for the half-period time window
for using observations (twindo), 2) 3.23 1023 s21 for the nudg-
ing coefficient of wind (coef_wind), 3) 1.2 3 1023 s21 for the
nudging coefficient of temperature (coef_t), 4) 8.0 3 1024 s21

for the nudging coefficient of relative humidity (coef_mois),
and 5) 20 km for the horizontal radius of influence (rinxy).

c. HYSPLIT configuration

We conducted HYSPLIT simulations for hypothetical releases
to study the impact of the various sUAS meteorological products
on HYSPLIT performance using different meteorological data-
sets: 1) sUAS-HRRR single profile, 2) sUAS-HRRR single pro-
file with a HRRR outer nest, 3) HRRR, 4) nonnudged WRF,
and 5) nudged WRF. The HYSPLIT simulations started at
1130 UTC (case 1) or 1300 UTC (case 2 and case 3), correspond-
ing to the times when the sUAS nudging started in theWRF sim-
ulations. We used a unit emission (1 g h21) for a continuous
release at 10 m AGL with 50000 particles total for 3 h. The re-
lease location was at OSI (36.03718N, 284.30788W) and coinci-
dent with the sUAS profiling location. The concentrations were
calculated on a 0.018 3 0.018 (;1 km 3 1 km) horizontal grid in
a layer 0–100 m above the ground using 10-min temporal averag-
ing. The HYSPLIT simulations utilized the Kantha–Clayson tur-
bulent mixing scheme, which uses the friction velocity, boundary
layer depth, and other state variables from WRF to compute the
turbulent velocity variances for the dispersion calculation (Ngan
et al. 2019).

4. Results and discussions

a. Case 1–20 August 2020

Eight sUAS profiles during 1104–1437 UTC 20 August 2020
were ingested into the WRF simulation. The choice of para-
meters for the nudging determines the strength of adjustment
made on model calculations toward observations. We conducted
nudged simulations with different settings and found a nudging
configuration with the smallest temperature and wind bias as
measured by the comparison with sUAS profiles. The mean ab-
solute error (MAE) for all nudging runs (runs 2–6 in Table 2)
was significantly smaller than the nonnudged run (run 1).
Using a smaller temporal weighting parameter (twindo 5 0.4 h
in run 3), the half-period time window for nudging, reduced
wind direction errors. When increasing the nudging weight for
wind (coef_wind 5 3.2 3 1023 s21 in run 4) and temperature
(coef_t 5 1.2 3 1023 s21 in run 5), the results had lower wind
speed and direction MAE and temperature MAE, respectively.
We also tested using the sUAS profile with different vertical
pressure intervals. The 5-hPa interval (run 6) gave a better result
statistically than the one using 10-hPa interval (run 5). Thus, the
nudging configuration of run 6 was applied to case 2 and 3
presented in sections 4b and 4c. It is understood that these
findings applied to this specific study and are not necessar-
ily general. Additional sensitivity tests will be needed
if sUAS profiling is carried out at different geographic
locations, under different weather conditions, and/or with
different temporal and spatial availability. However, the
parameters used in this study can be an initial setting for

other WRF simulations with sUAS data observational
nudging. Note that we set the horizontal radius of influence
to 20 km in the observational nudging as the sUAS data
were converted to a 20 km 3 20 km area meteorological
fields for driving HYSPLIT if WRF was not run. The choice
is arbitrary, but it will certainly affect the nudged simu-
lation results. Additional research and sensitivity analyses
will need to be conducted to examine the influence of the
horizontal radius of influence on the accuracy of the nudged
simulations.

The comparison of observed and modeled profiles for wind
speed, wind direction, and temperature shows that the obser-
vational nudging successfully adjusted the predicted wind and
temperature toward the measurements taken by the sUAS
(Fig. 3). At 1100 UTC (0700 local time), the easterly winds
in the run without observational nudging were corrected, and
the wind directions in the nudged run were well simulated.
The wind speed and temperature underprediction were still
present, even with the observational nudging. However, their
variations along with altitude in the nudged run matched bet-
ter with the sUAS profiles than in the nonnudged run. As the
nudging coefficient for moisture was small, we expected the
nonnudged and nudged predicted similar relative humidity as
shown in Fig. 3. The evaluation for the rest of this study fo-
cused on the wind speed and direction because they directly
drive the transport and dispersion of particles in the model.
However, we hope to put more effort in a future study to eval-
uate the nudged temperature and moisture and the associated
influence on dispersion simulations. In the late-morning hours
(1300 UTC and later), we notice smaller differences between
the nonnudged and nudged wind directions than earlier that
morning (1100 UTC). During the morning transition, the PBL
evolves from nighttime to daytime, and it can be challenging
for meteorological models to simulate accurate wind patterns
and mixing characteristics. For this reason, experimental and
numerical studies (e.g., Wildmann et al. 2015; Dimitrova et al.
2016; Efstathiou et al. 2016; Cuchiara and Rappengluck 2019;
Bauer et al. 2020, and Nielsen and Rahn 2022) were conducted
to understand the growth of the convective boundary layer
from the stable nocturnal boundary layer. Cuchiara and
Rappengluck (2019) argued that the morning transition of
PBL is important for the vertical mixing of pollutants not only
because of emissions from the surface but also because of pol-
lutants from the previous day stored within the residual layer.
The uncertainty in the meteorological input may cause errors
in modeling the transport and dispersion of pollutants. The
nudging approach using observations, such as sUAS measure-
ments, can be a remedy to model deficiencies under this chal-
lenging condition.

Figure 4 is the spatial plot of the model wind fields, showing
the influence of the sUAS data in the WRF simulation
through observational nudging. Larger wind speeds and more
easterly components of wind direction were simulated in the
nudged case around OSI. By setting 20 km around the sUAS
launch location for the radius of influence for the observa-
tional nudging, the impact of sUAS profiles on the WRF pre-
diction was present at the KCRC station. Note that the
KCRC tower data were not included in the WRF simulation.
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As soon as the observational nudging started, the positive
wind speed bias was reduced, and the wind direction was ad-
justed closer to the KCRC measurement (Fig. 5). In later
hours, the sUAS nudging changed the negative wind speed
bias in the nonnudged run to a positive bias while improving
the wind direction prediction. For temperature and PBL
height, the nudging had a minor impact, as shown in the

comparison at the KCRC tower. The meteorological measure-
ments collected at two towers were not included in WRF’s ob-
servational nudging but served as an independent dataset to
evaluate the meteorological fields, allowing us to assess how
much the nudging with sUAS profiles changed (improved or
degraded) the wind and temperature predictions as compared
with the surface observations.

FIG. 4. Horizontal distribution of wind speed and wind vector from two WRF simulations, (left) without observa-
tional nudging and (right) with observational nudging using sUAS data, at 1330 UTC 20 Aug 2020 (m s21). The black
dot indicates the HYSPLIT plume release location and the sUAS profiling location.

FIG. 3. The observed and WRF-modeled (left) wind speed, (left center) wind direction, (right center) temperature, and (right) relative
humidity profiles at (top) 1100 UTC and (bottom) 1300 UTC 20 Aug 2020. The y axis is altitude (km AGL).
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Five HYSPLIT simulations were conducted using the fol-
lowing meteorological input fields: 1) sUAS-HRRR single
profile, 2) sUAS-HRRR profile for an inner domain with
HRRR model fields for an outer domain, 3) HRRR model
fields only, 4) nonnudged WRF, and 5) nudged WRF with the
sUAS-data observational nudging. A 3-h hypothetical release
using a unit emission (1 g h21) was set at OSI (36.03718N,
284.30788W) and 10 m AGL with 50 000 computational par-
ticles. The concentration was calculated by summing particles
in the volume of 1 km 3 1 km and from the surface to 100 m
AGL with 10-min temporal averaging. The concentration
plots at 1330 UTC (i.e., 2 h after the initiation) are shown in
Fig. 6. The simulation using the sUAS-HRRR single profile
produces a realistic plume downwind of a source. However, in
this case, one observed profile only covers a limited area, such
as a 20 km by 20 km domain. By the second hour of the run,
the model plume hit the western boundary of the data do-
main, and no meteorological data were available beyond the
boundary for HYSPLIT to continue the simulation. The
model plume could travel farther away when using HRRR
model fields for the outer nest together with the converted-
sUAS measurements. However, pollutant concentrations can
be artificially affected at the domain boundary area due to the
inconsistency of winds between the two datasets; in this case,
the pollutant concentration appears to be artificially enhanced
due to lower wind speeds at the boundary in the HRRR-
based outer domain than with the sUAS inner domain. By as-
similating the sUAS observations into WRF, we can avoid the
issue of the limited domain and the flow inconsistency of com-
bining the sUAS dataset and other NWP products. In the
HRRR and nonnudged WRF meteorological inputs, weaker
wind speeds resulted in higher pollutant concentrations near
the source location (Fig. 6, bottom panel). Both plumes went
in the southwest direction and had similar horizontal cover-
age. Using the nudged WRF meteorological fields, the model

plume moved westward and later curved northward when go-
ing farther away from the source location. This case study
demonstrates that using sUAS wind and temperature profiles
in WRF simulations through observational nudging can re-
duce WRF Model biases and impact HYSPLIT dispersion
simulations.

b. Case 2–16–18 November 2020

We applied sUAS nudging to the WRF Model for a 3-day
period from 16 to 18 November 2020. There were eight sUAS
profiles each day starting at 1249 UTC. The sUAS profile
evaluation continues to show that the observational nudging
approach positively impacted wind prediction. The improve-
ment of wind direction was especially evident on 16 and
17 November (Fig. 7). In addition to comparing the vertical
profiles, we used tower measurements taken at OSI for the
model evaluation. The tower data were not included in WRF
simulations and were taken at the site where the sUAS flights
took place. Figure 8 shows the time series of surface wind
speed and direction from the nonnudged WRF, nudged
WRF, and HRRR meteorological fields. The wind prediction
was adjusted in the nudged case during the hours when sUAS
profiles were available (shaded areas in Fig. 8). The nudged
wind directions on 16 and 17 November had a better agree-
ment with the tower wind measurements. At the end of sUAS
profiling periods, the influence of observational nudging on
the model wind direction lasted a little longer, up to about an
hour on 16 November. Then, the model winds returned to the
nonnudged conditions (outside the gray-shaded areas in Fig. 8).
This demonstrates the usefulness of the sUAS profiles in cor-
recting wind direction errors through observational nudging.
Dispersion simulations may better simulate the plume move-
ment by using the nudged wind fields while, outside the sUAS
profile period, the dispersion results may inherit the errors in the
model wind fields that drive the simulations. On 18 November,

FIG. 5. Time series of observed and modeled (top left) wind speed, (top right) wind direction, (bottom left) temper-
ature, and (bottom right) PBL height (no observation) at KCRC. The sUAS observational nudging was carried out
during the gray-shaded time periods.
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wind direction in the nonnudged and nudged simulations were
similar due to the relative accuracy of the nonnudged WRF run
in predicting wind direction on this day (Figs. 7 and 8). The wind
speed prediction increased during the nudging period on 16 and
18 November, resulting in positive biases but decreased on
17 November, reducing the positive biases in the nonnudged
case.

When we used the different meteorological inputs to drive
HYSPLIT simulations, the modeled plumes on 16 November
had very different spatial distributions and peak values,
whereas those on 18 November appeared similar (Fig. 9). The
observational nudging corrected the westerly winds in the
nonnudged run to easterly winds shown in Fig. 7, resulting in
the plume in the nudged simulation moving to the direction
(west) opposite to the nonnudged plume (east). The plume
driven by HRRR moved to the northwest but with a lower
wind speed that caused it to stay closer to the release location.
The overprediction of surface wind speed relative to the OSI
tower observation on 16 November that is due to the sUAS
nudging (Fig. 8) would likely have caused the plume to travel
faster and have a lower peak concentration. On 18 November,
the wind speed had a sharp increase with altitude whereas the
wind direction was constant northeasterly in the lowest 500 m
AGL shown in Fig. 7. Both WRF simulations predicted simi-
lar wind patterns during the sUAS profiling period on this
day, yet the wind speed in the nudgedWRF was slightly larger

than the nonnudged run. The relatively accurate wind in the
nonnudged WRF resulted in a narrow and southwestward
moving plume that the HRRR and nudged simulations also
had.

c. Case 3–15 and 16 December 2021

The automated ingestion of sUAS observations was added
to READY for incorporating the sUAS measurements to
generate WRF meteorological fields to drive HYSPLIT simu-
lations in a quasi-operational end-to-end system. When the
sUAS files for 15 and 16 December 2021 were uploaded to
the READY server, they were automatically converted to a
nudging-ready format for WRF modeling. A meteorological
simulation of a 3-km grid spacing domain (WRF-d3b in Fig. 2)
centered at the sUAS location was initialized using forecast
NAM data. The nudged WRF output were converted to
HYSPLIT meteorological files, archived, and made available
for users to run HYSPLIT simulations. We continue to notice
that using observational nudging in WRF improves model simu-
lated wind speed and direction toward the sUAS profiles. The
change of wind direction with height was better simulated in
the nudged WRF simulation than in the nonnudged WRF and
HRRR, as reflected in the reduced MAE in Table 3. The MAE
was computed using sUAS profiles on 15 and 16 December
2021 for temperature (8C), wind speed (m s21), and wind direc-
tion (8). The errors between the model and sUAS-collected

FIG. 6. Spatial plots of HYSPLIT simulations using different meteorological data at 1330 UTC 20 Aug 2020 (g m23).
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values for these variables were significant reduced when obser-
vational nudging is used in the simulation.

Time series of wind profiles at OSI for nudged and non-
nudged WRF simulations on 15 and 16 December 2021 are

shown in Fig. 10. WRF meteorological fields from the non-
nudged and nudged runs were output every 30 min, and the
first available sUAS profile was at around 1300 UTC. We ob-
served that the wind profile difference between the nonnudged

FIG. 7. The observed and WRF-modeled wind speed and direction profiles at (left) 1300, (center) 1400, and (right) 1500 UTC (top) 16,
(middle) 17, and (bottom) 18 Nov 2020. The wind speed refers to the bottom axis (m s21), and the wind direction refers to the top axis (8).
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and nudged simulations was more prominent on the first day
than on the second day (Fig. 10). On 15 December, the obser-
vational nudging with sUAS-collected data produced stronger
wind speeds. The most significant differences between the
nonnudged and nudged wind field occurred in the layer from

the surface to about 400 m during 1300–1500 UTC. The non-
nudged WRF run simulated calm northeasterly to westerly
winds [less than 2 kt (1 kt ’ 0.51 m s21)] for the lowest 200 m
AGL. However, the sUAS observational nudging generated
calm southerly winds (less than 3 kt) near the surface and a
layer of southwesterly wind (4–12 kt) increasing with heights
at about 100–400 m, which was above the modeled nocturnal
boundary layer. The next day (16 December), the nonnudged
and nudged wind profiles were very similar, except that a
larger wind speed was produced by the sUAS observational
nudging in the lowest 100 m above the ground. Also, a higher
PBL height was simulated in the earlier morning in the nudged
WRF.

We then conducted HYSPLIT simulations using three me-
teorological inputs: HRRR, nonnudged WRF, and nudged
WRF. The concentration plots at 1400 UTC (i.e., one hour af-
ter the initiation) on 15 and 17 December 2021 are shown in
the top row of Figs. 11 and 12, respectively. Note that the con-
centration is calculated based on the mass of computational
particles in an output domain with a resolution of 1 km 3

1 km horizontally and 0–100 m vertically. The horizontal dis-
tribution showed more significant differences between the
three simulations on 15 December than on 16 December,
which is consistent with the wind pattern evaluation (Fig. 10).
On 15 December, the nonnudged case suggested stagnant con-
ditions, causing the plume to stay close to the release location.

FIG. 8. Time series of observed and modeled (top) wind speed
and (bottom) wind direction at OSI for 16–18 Nov 2020. The
sUAS observational nudging was carried out during the gray-
shaded time periods.

FIG. 9. Spatial plots of HYSPLIT simulations using different meteorological data at 1500 UTC (top) 16 and (bottom) 18 Nov 2020 (g m23).
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The impact of using observational nudging was more notice-
able on 15 December as a high pressure system was present
over the eastern United States, resulting in a relatively weak
synoptic regime in the study area. On 16 December, a rela-
tively strong influence of the synoptic scale winds was present
as a result of a cold front approaching. Thus, the influence of
sUAS data nudging on the WRF simulation was small.

In addition to the wind fields in the nudged WRF causing
different transport patterns, particle vertical distribution fig-
ures reveal a difference in the vertical mixing of particles in
HYSPLIT simulations. The bottom rows of Figs. 11 and 12
show the vertical distribution of particles. On 15 December,
simulated particles in the runs using HRRR and nonnudged
WRF data tended to stay near the surface (up to about 100 m,
color coded as red), while in the nudged WRF, particles were

dispersed to higher altitudes. As a result, the nudged run had a
lower maximum concentration at the surface level (768 g m23)
relative to the other two runs (HRRR: 1934 g m23 and non-
nudged: 4457 g m23). The next day, the simulation using the
nudgedWRF had particles distributed within the lowest 200 m,
while the other simulations dispersed some particles to high
altitudes. However, the nudged WRF and HRRR provided a
similar magnitude of southwesterly wind that was obviously
larger than the nonnudged wind (Fig. 10). With the adjusted
wind pattern and vertical mixing characteristics, the nudged
run (453 g m23) had a maximum surface concentration close
to the HRRR case (589 g m23), yet much lower than the non-
nudged case (1256 g m23).

In HYSPLIT, the advection of particles uses mean wind
fields, while the dispersion calculation requires the standard
deviations of turbulent velocity (Ngan et al. 2019; Stein et al.
2015). The Kantha–Clayson mixing scheme, used in this
study (one of the physics configuration choices available in
HYSPLIT) computes the turbulent velocity as a function of
friction velocity, convective velocity scale, and boundary layer
height. As a result of the adjustment of wind and temperature
toward the sUAS measurements, other meteorological varia-
bles such as vertical velocity, friction velocity, and mixing
height are indirectly changed. Figure 13 shows the east–west
cross section of vertical velocity and horizontal wind barbs

FIG. 10. Time series of wind profile plots at OSI on (top) 15 and (bottom) 16 Dec 2021 for (left) nonnudged WRF
and (right) nudged WRF (kt). The x axis is time (h), and the y axis represents the altitude (km AGL). The black line
is the modeled PBL height (km AGL). The sUAS observational nudging was carried out during the gray-shaded time
periods.

TABLE 3. MAE computed using sUAS-collected data for
temperature (8C), wind speed (m s21), and wind direction (8).

15 Dec 2021 16 Dec 2021

T WS WD T WS WD

Nonnudged WRF 2.07 2.43 40.93 1.32 2.56 19.69
Nudged WRF 1.16 0.87 11.84 0.66 1.13 11.38
HRRR 1.89 1.39 30.37 1.69 1.68 20.39
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from the nonnudged and nudged WRF simulations. Further-
more, using the nudged WRF meteorological data, HYSPLIT
may compute different stability and mixing parameters than
the nonnudged data. Figure 14 compares the profiles of the
vertical velocity variance computed in HYSPLIT based on
the nonnudged and nudged WRF meteorological fields. In-
spection of these two figures suggests why the differences in
the simulated vertical mixing. On 15 December, the nudged
WRF run had a larger vertical velocity variance (Fig. 14), espe-
cially in the lowest 100 m, and had positive vertical velocity
above the release location and adjacent grid cells (the second–

seventh model layer, i.e., about 23–172 m AGL) (Fig. 13), that
resulted in transporting and dispersing particles more effi-
ciently to higher altitudes than the nonnudged simulation as
shown in Fig. 11. On 16 December, the nonnudged WRF had a
weak vertical velocity variance near the surface and gradually
increased with height, while the maximum value occurred at
around 500 m. The vertical velocity variance near the surface
was significantly higher in the nudged WRF than the non-
nudged WRF, then decreased at about 100 m. The maximum
vertical velocity variance in the nudged WRF occurred at a
higher level, around 600 m. A slightly stronger downward

FIG. 12. As in Fig. 11, but at 1400 UTC 16 Dec 2021.

FIG. 11. HYSPLIT simulations using (left) HRRR data, (center) nonnudged WRF, and (right) nudged WRF at
1400 UTC 15 Dec 2021, showing (top) horizontal plots of tracer concentration (g m23) and (bottom) vertical distribu-
tion of particles, with color-coded dots for different altitudes (m AGL).
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vertical velocity above the release location (surface–eighth
model layer, i.e., up to 211 m AGL) was present in the WRF
run using observational nudging with sUAS profiles. As a re-
sult, the nudged plume was kept under 200 m, as shown in Fig.
12. The observational nudging of sUAS-collected data not only
adjusts the prediction of state variables, such as mean wind and
temperature, but also alters the conditions in the lower part of
the PBL that further impact the simulated mixing used in dis-
persion simulations.

5. Summary

An sUAS was flown near Oliver Springs Airport to obtain
meteorological measurements. Wind and temperature profiles
with the sUAS were collected for the lowest few hundred me-
ters AGL during the morning transition of the boundary
layer. We conducted numerical experiments using WRF and
HYSPLIT to better understand the feasibility and benefit of
using the sUAS observations in meteorological and dispersion
modeling. After converting to the HYSPLIT meteorological
input files, sUAS profiles appended with upper level profiles
from HRRR meteorological fields were used directly to drive
HYSPLIT simulations. However, a single profile only pro-
vides a small area of gridded data for running HYSPLIT. If
using an NWP product, such as the HRRR meteorological
fields, for a domain outside this limited area, artificially high
or low concentrations may be simulated near the domain
boundary when the plume travels from the inner to outer
domain due to the inconsistencies of the winds in the two
meteorological products. The preferred approach is incorpo-
rating the measurements into meteorological simulations to
generate more accurate, continuous input data for dispersion

modeling. In this study, the temperature and wind data ob-
tained from the sUAS profiles were ingested into the WRF
simulations through observational nudging to adjust the
model toward the measurements. The profile evaluation
shows that the model biases for wind and temperature
were reduced in the nudged WRF simulation. The improve-
ment of wind direction was especially evident, with up to 71%
reduction of mean absolute error. In comparison with the
tower measurements at OSI (at the sUAS location) and KCRC
(about 12 km southeast of OSI), the observational nudging
approach positively impacted the wind prediction. The inaccu-
rate wind patterns and mixing characteristics in the WRF
meteorological fields during the morning transition period
of PBL are corrected by using observational nudging with
sUAS measurements.

HYSPLIT simulations for a 3-h hypothetical release using a
unit emission were conducted using the nudged WRF Model
fields, and the results were compared with the run with non-
nudged WRF. The movement of the calculated plume was im-
pacted when using the nudged WRF data due to the model
wind patterns being corrected by the sUAS observations. Fur-
thermore, the simulated particles in the run using nudged WRF
were dispersed to higher altitudes because of the adjusted mix-
ing characteristics in the lower part of the boundary layer. The
comparison of dispersion results on 15 and 16 December 2021
shows that using sUAS observational nudging is more signifi-
cant under weak synoptic conditions than strong influences
from regional weather (e.g., resulting from an approaching cold
front). To enhance the HYSPLIT simulations on READY, we
added an automated sUAS data ingestion to the system so that
dispersion simulations can be driven by the meteorological data
converted directly from the observations or the nudged files

FIG. 13. The cross section (C1–C2 on the map) of vertical velocity and horizontal wind barbs from (left) nonnudged
WRF and (right) nudged WRF at 1400 UTC (top) 15 and (bottom) 16 Dec 2021 (cm s22). The black dot indicates the
HYSPLIT plume release location and the sUAS profiling location.
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with the sUAS measurements. This new feature can better sup-
port the local NWS WFO in Morristown for planning emer-
gency response activities or responding to a real event involving
releases of harmful materials to the air. Very different disper-
sion results were introduced by the meteorological fields used.
The observational nudging produced not just an sUAS-nudged
wind flow but also adjusted meteorological fields that further
impacted the mixing calculation in HYSPLIT. Note that the dis-
persion simulations presented in this study were hypothetical
releases, and the “true” dispersion was unknown. It will be ideal
to have tracer experiments coinciding with sUAS flights that

provide passive tracer releases and well-designed sampling net-
works for tracer concentration. Then, by using tracer data to
run dispersion simulations and evaluating the results, we may
assess how the sUAS-nudged meteorological input can actually
improve the dispersion results. An example of such controlled
tracer experiments is Project Sagebrush phase 1 (Finn et al. 2016).
Ngan et al. (2018, 2019) used sampled concentrations for known
tracer releases to assess the dispersion model performance and
weather data coinciding with those releases to evaluate the
meteorological fields that drove the dispersion simulations.
ARL’s Data Archive of Tracer Experiments and Meteorology

FIG. 14. The profile of vertical velocity variance from HYSPLIT at OSI on (top) 15 and (bottom) 16 Dec 2021 for
(left) nonnudged WRF and (right) nudged WRF (m2 s22). Color-coded lines indicate different hours, and the black
lines are the averaged vertical velocity variance for 1300–1500 UTC. Color-coded dots are PBL height (km AGL) at
the corresponding hours.
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(DATEM; http://www.arl.noaa.gov/DATEM.php) includes other
available tracer experiments conducted on different spatial
scales and geographic locations (Rolph et al. 2017).

In future work, we plan to collect additional vertical pro-
files of meteorological variables taken by sUAS in different
synoptic conditions and hours of the day to evaluate the likely
benefit of the inclusion of sUAS observations on WRF and
HYSPLIT simulations. Given increasing interest and develop-
ment of sUAS technology, we will continue the work to col-
lect data with other types of sUAS, such as fixed wing and
rotary wing, and incorporate them into the WRF simulation
to benefit HYSPLIT modeling. We will further study the de-
gree of improvement in the nudged results by comparing
these results with independent surface data (tower measure-
ments) and vertical profile measurements not used in the
nudging. Further, we will investigate the effects of different
nudging configurations for different observational datasets.
Using more sUAS observations, we will continue sensitivity
tests for observational nudging and study the impact of
nudged WRF meteorological fields on vertical mixing in dis-
persion simulations. Coupling these analyses with tracer ex-
periments, where possible, will allow us to test whether the
sUAS-adjusted dispersion simulations are more accurate, as
would be expected if the underlying meteorological fields
driving the simulation are more accurate.
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